Heme oxygenase metabolites inhibit tubuloglomerular feedback (TGF).

نویسندگان

  • YiLin Ren
  • Martin A D'Ambrosio
  • Hong Wang
  • Ruisheng Liu
  • Jeffrey L Garvin
  • Oscar A Carretero
چکیده

Tubuloglomerular feedback (TGF) is the mechanism by which the macula densa (MD) senses increases in luminal NaCl concentration and sends a signal to constrict the afferent arteriole (Af-Art). The kidney expresses constitutively heme oxygenase-2 (HO-2) and low levels of HO-1. HOs release carbon monoxide (CO), biliverdin, and free iron. We hypothesized that renal HOs inhibit TGF via release of CO and biliverdin. Rabbit Af-Arts and attached MD were simultaneously microperfused in vitro. The TGF response was determined by measuring Af-Art diameter before and after increasing NaCl in the MD perfusate. When HO activity was inhibited by adding stannous mesoporphyrin (SnMP) to the MD perfusate, the TGF response increased from 2.1+/-0.2 to 4.1+/-0.4 microm (P=0.003, control vs. SnMP, n=7). When a CO-releasing molecule, (CORM-3; 50 microM), was added to the MD perfusate, the TGF response decreased by 41%, from 3.6+/-0.3 to 2.1+/-0.2 microm (P<0.001, control vs. CORM-3, n=12). When CORM-3 at 100 microM was added to the perfusate, it completely blocked the TGF response, from 4.2+/-0.4 to -0.2+/-0.3 microm (P<0.001, control vs. CORM-3, n=6). When biliverdin was added to the perfusate, the TGF response decreased by 79%, from 3.4+/-0.3 to 0.7+/-0.4 microm (P=0.001, control vs. biliverdin, n=6). The effects of SnMP and CORM-3 were not blocked by inhibition of nitric oxide synthase. We concluded that renal HO inhibits TGF probably via release of CO and biliverdin. HO regulation of TGF is a novel mechanism that could lead to a better understanding of the control of renal microcirculation and function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heme oxygenase metabolites inhibit tubuloglomerular feedback in vivo.

Tubuloglomerular feedback (TGF) is a renal autoregulatory mechanism that constricts the afferent arteriole in response to increases in distal NaCl. Heme oxygenases (HO-1 and HO-2) release carbon monoxide (CO) and biliverdin, which may help control renal function. We showed in vitro that HO products inhibit TGF; however, we do not know whether this also occurs in vivo or the mechanism(s) involve...

متن کامل

Testosterone enhances tubuloglomerular feedback by increasing superoxide production in the macula densa.

Males have higher prevalence of hypertension and renal injury than females, which may be attributed in part to androgen-mediated effects on renal hemodynamics. Tubuloglomerular feedback (TGF) is an important mechanism in control of renal microcirculation. The present study examines the role of testosterone in the regulation of TGF responses. TGF was measured by micropuncture (change of stop-flo...

متن کامل

Reduced proximal reabsorption resets tubuloglomerular feedback in euvolemic rats.

Inhibition of renal carbonic anhydrase reduces proximal reabsorption and activates tubuloglomerular feedback (TGF). The TGF response is saturable, with highest gain focused near the natural flow rate. Therefore, any large change imposed on ambient tubular flow should reduce the TGF response to subequent flow perturbations. However, TGF tends to align with ambient flow regardless of the rate of ...

متن کامل

Induction of Heme Oxygenase -1 By Lipocalin 2 Mediated By Nf-Kb Transcription Factor

Purpose: Effect of lipocalin 2 on the expression of heme oxygenase I , II and NF-kB transcription factor was the purpose of this survey. Materials and Methods: Lcn2 was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant vector was transfected to CHO and HEK293T to establish stable cell expressing lipocalin 2. The presence of lipocalin 2 gene in these cells was confi...

متن کامل

Mechanism of inhibition of tubuloglomerular feedback by CO and cGMP.

Tubuloglomerular feedback (TGF) is a mechanism that senses NaCl in the macula densa (MD) and causes constriction of the afferent arteriole. CO, either endogenous or exogenous, inhibits TGF at least in part via cGMP. We hypothesize that CO in the MD, acting via both cGMP-dependent and -independent mechanisms, attenuates TGF by acting downstream from depolarization and calcium entry into the MD c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 295 4  شماره 

صفحات  -

تاریخ انتشار 2008